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1. Background 

This research is prompted by the prediction that a hypothetical material ß-C3N4, 

which has the same structure as ß-Si3N4, has mechanical properties similar to those of 

diamond. As research groups around explored different ways of synthesizing this material, 

there was speculation that ß-C3N4 is metastable. While variable non-equilibrium synthesis 

techniques were used, it was our belief that we must provide some sort of structural 

template to facilitate its nucleation and subsequent growth. 

It turns out that several transition metals (Ti, Zr, Nb and Hf) and their nitrides (TiN, 

ZrN etc) may be used for this purpose. For example, TiN(l 11) is hexagonal and is lattice- 

matched to ß-C3N4(0001) within a few percent. Other nitrides such as ZrN are even 

closer. Even if this method of epitaxial stabilization works, there will be a buildup of 

elastic strain because of the finite mismatch, increasing with the film thickness. Beyond 

a critical thickness, the system will be unstable. This problem can be solved by depositing 

alternating layers of these two materials. That is, before the critical thickness is reached, 

the template layer (e.g., TiN) will be deposited. The whole process can then be repeated 

until a sufficiently thick film can be synthesized for various applications. 

In the course of these investigations, we noted that TiB2(0001) is also lattice- 

matched to ß-C3N4(0001) within a few percent. Bulk TiB2 is hard (hardness = 35 GPa) 

and wear-resistant. In fact, TiB2 is used as a strengthening precipitate for various high 

performance aluminum alloys. Therefore, we extend our research to include TiB2 and an 

important boron-related system, viz. boron nitride. Time limitation precluded us from 

exploring in detail the boron nitride system. However, some exciting results were obtained 

that prompted continuing support from industry, as detailed below. In addition, as we 

continued to expand our research in nanolayered materials, we had a need to extend the 

capabilities of our existing deposition systems. We were fortunate to be able to acquire a 

new dual-cathode magnetron sputter-deposition system, funded through the DURIP/AFOSR 

program.  Some of our films were made in this system. 
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In the following sections, rather than presenting the detailed technical results (which 

were described in detail in previous reports), we will simply highlight the key conclusion 

for each material system mentioned above (ß-C3N4 /TiN, ß-C3N4 /ZrN, ß-C3N4 /TiB2 , 

TiB2, TiBxNy , and hexagonal BN). A summary of personnel information and publications 

will be included at the end of this report. 

2. Experimental Techniques 

All coating systems described in this report were synthesized by a dual-cathode 

magnetron sputter-deposition system. The system operated at a base pressure of mid-10"7 

Torr. To avoid target poisoning, we controlled the flow rate by monitoring the partial 

pressure of the active gas (nitrogen in this case). Coating properties were optimized by 

adjusting the substrate bias. We did not deliberately heat the substrate, so the substrate 

temperature varied according to the process conditions (400-500K typical). 

After deposition, coatings were characterized by a wide range of techniques as 

indicated below: 

composition - Auger electron spectroscopy, Rutherford backscattering spectroscopy 

bonding - FTIR, Raman, near-edge x-ray absorption, electron energy loss spectroscopy 

hardness/modulus - nanoindentation 

wear - pin-on-disk testing 

structure - x-ray diffraction, high-resolution transmission electron microscopy 

surface roughness/morphology - atomic force microscopy 

The optimum properties (high hardness, smooth morphology and low wear) were 

obtained through statistical design of experiments. Results described below represent these 

optimum materials. 
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3.  ß-C3N4 - related systems 

(a) ß-C3N4/TiN 

When the carbon nitride thickness is more than 1-2 ran, the hardness of the coating 

is low (20 GPa or less). Electron microscopy shows that the coating is amorphous. When 

the carbon nitride thickness is 1 nm or less, the coating is fully crystalline, with hardness 

in the 50 GPa regime. Electron diffraction reveals extra diffraction peaks matching those 

from ß-C3N4. In addition, there is a strong correlation between the occurrence of this high 

hardness and the predominantly (111) texture of TiN. This observation is consistent with 

our hypothesis that TiN(lll) facilitates the nucleation and subsequent growth of ß-C3N4. 

(b) ß-C3N4/ZrN 

The results from ß-C3N4 / ZrN superlattice coatings are essentially similar to those 

of ß-C3N4 / TiN. In this case, we made major efforts to determine the structure and local 

bonding characteristics of the ß-C3N4 layers via several techniques. Transmission electron 

diffraction clearly reveals extra diffraction peaks which can be indexed to ß-C3N4. Raman 

spectroscopy shows the absence of amorphous features in the 1400-1600 cm"1 range. 

Instead, it shows evidence of a C-N stretch around 1100 cm"1. Near-edge x-ray absorption 

shows that the carbon atoms are in the sp3 state. The latter two observations are consistent 

with carbon atoms in ß-C3N4. Finally, Rutherford backscattering concludes that the carbon 

nitride layers have a N/C atomic ratio of 1.3 ±0.1, consistent with the composition of ß- 

C3N4. Taken together, these results provide the strongest evidence to date that we have 

successfully synthesized ß-C3N4. 

(c)ß-C3N4/TiB2 

With the above two systems, the transition metal nitride component is relatively soft 

(hardness - 20-25 GPa), thereby lowering the hardness of the overall coating. By 

switching to TiB2, we were hoping to increase the hardness further. Unfortunately, the two 

components are not compatible using the dual-cathode magnetron system. To produce 

carbon nitride, we sputtered a graphite target in an argon/nitrogen ambient. To produce 
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TiB2, we sputtered TiB2 in an argon ambient. Therefore, in order to deposit ß-C3N4 / 

TiB2 superlattice coatings, we should have a way to switch the two gases. Such a 

capability did not exist with our system. Instead, we kept a fixed argon/nitrogen ambient. 

As discussed in the next section, while oriented, crystalline and hard TiB2 films can be 

made by sputtering TiB2 in argon, presence of nitrogen tends to amorphize and soften TiB2. 

In spite of the various tricks we used to reduce the nitrogen partial pressure in front of the 

TiB2 target, we were unable to produce a fully crystalline TiB2 component in the ß-C3N4 

/TiB2 superlattice coatings. The hardness of these coatings is ~ 30-40 GPa. 

(d) TiB2 and TiBxNy 

DC magnetron sputtering of TiB2 by argon can produce crystalline, smooth and 

highly (0001) textured TiB2 films, provided that an optimum combination of pressure and 

substrate bias was employed. Under these conditions, we were able to synthesize TiB2 

films with hardness « 45 GPa and r.m.s. surface roughness < 3Ä. These films were shown 

to have wear performance significantly better than TiN. Addition of the smallest amounts 

of nitrogen to the sputter gas resulted in the reduction of hardness and crystallinity. 

(e) Hexagonal BNxCy 

By performing magnetron sputtering of boron carbide (B13C3) in an argon/nitrogen 

ambient, it is possible to produce BNxCy thin films. These films have a bluish color, with 

typical hardness « 20-30 GPa. Transmission electron microscopy studies showed that the 

films have a turbostratic structure, i.e., hexagonal BN planes lining up perpendicular to the 

substrate surface. Even without further optimization, these films are extremely useful for 

dielectric and wear-protection applications. They have electrical resistivity > 5 x 1010 

ohm-cm and dielectric strength > 5 x 106 V/cm. Further optimization with proper choice 

of x, y and deposition conditions may yield BN-based coatings with much enhanced 

properties. The result of this initial work has attracted the interest of IBM, which is 

interested in developing new materials not only as protective overcoats for hard disk drives, 

but also for read-write heads. A research contract was awarded by IBM to explore the use 
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of turbostratic boron nitride and aluminum oxide for specific magnetic recording 

applications. 
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